Injectivity of differentiable maps ℝ2 → ℝ2 at infinity

Carlos Gutierrez, Roland Rabanal

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

10 Citas (Scopus)


The main result given in Theorem 1.1 is a condition for a map X, defined on the complement of a disk D in R2 with values in ℝ2, to be extended to a topological embedding of ℝ2, not necessarily surjective. The map X is supposed to be just differentiable with the condition that, for some ε > 0, at each point the eigenvalues of the differential do not belong to the real interval (-ε,∞). The extension is obtained by restricting X to the complement of some larger disc. The result has important connections with the property of asymptotic stability at infinity for differentiable vector fields.

Idioma originalInglés
Páginas (desde-hasta)217-239
Número de páginas23
PublicaciónBulletin of the Brazilian Mathematical Society
EstadoPublicada - jun. 2006
Publicado de forma externa


Profundice en los temas de investigación de 'Injectivity of differentiable maps ℝ2 → ℝ2 at infinity'. En conjunto forman una huella única.

Citar esto