TY - JOUR
T1 - Incremental Principal Component Pursuit for Video Background Modeling
AU - Rodríguez, Paul
AU - Wohlberg, Brendt
PY - 2016/5/1
Y1 - 2016/5/1
N2 - Video background modeling is an important preprocessing step in many video analysis systems. Principal component pursuit (PCP), which is currently considered to be the state-of-the-art method for this problem, has a high computational cost, and processes a large number of video frames at a time, resulting in high memory usage and constraining the applicability of this method to streaming video. In this paper, we propose a novel fully incremental PCP algorithm for video background modeling. It processes one frame at a time, obtaining similar results to standard batch PCP algorithms, while being able to adapt to changes in the background. It has an extremely low memory footprint, and a computational complexity that allows real-time processing.
AB - Video background modeling is an important preprocessing step in many video analysis systems. Principal component pursuit (PCP), which is currently considered to be the state-of-the-art method for this problem, has a high computational cost, and processes a large number of video frames at a time, resulting in high memory usage and constraining the applicability of this method to streaming video. In this paper, we propose a novel fully incremental PCP algorithm for video background modeling. It processes one frame at a time, obtaining similar results to standard batch PCP algorithms, while being able to adapt to changes in the background. It has an extremely low memory footprint, and a computational complexity that allows real-time processing.
M3 - Artículo
SN - 0924-9907
VL - 55
JO - Journal of Mathematical Imaging and Vision
JF - Journal of Mathematical Imaging and Vision
ER -