Incorporating prior-knowledge in support vector machines by kernel adaptation

Antoine Veillard, Daniel Racoceanu, Stéphane Bressan

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

3 Citas (Scopus)

Resumen

SVMs with the general purpose RBF kernel are widely considered as state-of-the-art supervised learning algorithms due to their effectiveness and versatility. However, in practice, SVMs often require more training data than readily available. Prior-knowledge may be available to compensate this shortcoming provided such knowledge can be effectively passed on to SVMs. In this paper, we propose a method for the incorporation of prior-knowledge via an adaptation of the standard RBF kernel. Our practical and computationally simple approach allows prior-knowledge in a variety of forms ranging from regions of the input space as crisp or fuzzy sets to pseudo-periodicity. We show that this method is effective and that the amount of required training data can be largely decreased, opening the way for new usages of SVMs. We propose a validation of our approach for pattern recognition and classification tasks with publicly available datasets in different application domains.

Idioma originalInglés
Título de la publicación alojadaProceedings - 2011 23rd IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2011
Páginas591-596
Número de páginas6
DOI
EstadoPublicada - 2011
Publicado de forma externa
Evento23rd IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2011 - Boca Raton, FL, Estados Unidos
Duración: 7 nov. 20119 nov. 2011

Serie de la publicación

NombreProceedings - International Conference on Tools with Artificial Intelligence, ICTAI
ISSN (versión impresa)1082-3409

Conferencia

Conferencia23rd IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2011
País/TerritorioEstados Unidos
CiudadBoca Raton, FL
Período7/11/119/11/11

Huella

Profundice en los temas de investigación de 'Incorporating prior-knowledge in support vector machines by kernel adaptation'. En conjunto forman una huella única.

Citar esto