Improving Broadband Emission-Based Soot Pyrometry Using Convolutional Neural Networks

Alonso Rodriguez, Jorge Portilla, Juan Jose Cruz, Felipe Escudero, Rodrigo Demarco, Andres Fuentes, Gonzalo Carvajal

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

3 Citas (Scopus)

Resumen

Broadband Emission (BEMI) pyrometry is a low-cost technique for indirect characterization of soot temperature fields in laboratory flames using images captured with an RGB camera. However, retrieving temperature from color images through classical deconvolution techniques requires solving ill-posed inverse problems, producing results that are highly sensitive to signal noise and the choice of regularization parameters. This paper proposes using Convolutional Neural Networks (CNNs) to improve the accuracy of estimated 2D soot temperature fields from images of canonical axisymmetric laminar flames. Using a dataset of physically-grounded simulated images of temperature fields in the flame and their corresponding convoluted projections in the camera plane, we trained a CNN to learn the relationship between the reference temperature and the measured signals. Experiments over simulated and experimental images show that the trained CNN outperforms classical inversion methods when retrieving temperature from noisy images, especially in areas of interest such as the center of the flame. Resilience to noise makes CNNs attractive for implementing low-cost techniques for soot pyrometry using equipment of different quality.

Idioma originalInglés
Título de la publicación alojadaI2MTC 2021 - IEEE International Instrumentation and Measurement Technology Conference, Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781728195391
DOI
EstadoPublicada - 17 may. 2021
Publicado de forma externa
Evento2021 IEEE International Instrumentation and Measurement Technology Conference, I2MTC 2021 - Virtual, Glasgow, Reino Unido
Duración: 17 may. 202120 may. 2021

Serie de la publicación

NombreConference Record - IEEE Instrumentation and Measurement Technology Conference
Volumen2021-May
ISSN (versión impresa)1091-5281

Conferencia

Conferencia2021 IEEE International Instrumentation and Measurement Technology Conference, I2MTC 2021
País/TerritorioReino Unido
CiudadVirtual, Glasgow
Período17/05/2120/05/21

Huella

Profundice en los temas de investigación de 'Improving Broadband Emission-Based Soot Pyrometry Using Convolutional Neural Networks'. En conjunto forman una huella única.

Citar esto