Graph embedding on mass spectrometry- and sequencing-based biomedical data

Edwin Alvarez-Mamani, Reinhard Dechant, César A. Beltran-Castañón, Alfredo J. Ibáñez

Producción científica: Contribución a una revistaArtículo de revisiónrevisión exhaustiva

Resumen

Graph embedding techniques are using deep learning algorithms in data analysis to solve problems of such as node classification, link prediction, community detection, and visualization. Although typically used in the context of guessing friendships in social media, several applications for graph embedding techniques in biomedical data analysis have emerged. While these approaches remain computationally demanding, several developments over the last years facilitate their application to study biomedical data and thus may help advance biological discoveries. Therefore, in this review, we discuss the principles of graph embedding techniques and explore the usefulness for understanding biological network data derived from mass spectrometry and sequencing experiments, the current workhorses of systems biology studies. In particular, we focus on recent examples for characterizing protein–protein interaction networks and predicting novel drug functions.

Idioma originalInglés
Número de artículo1
PublicaciónBMC Bioinformatics
Volumen25
N.º1
DOI
EstadoPublicada - dic. 2024

Huella

Profundice en los temas de investigación de 'Graph embedding on mass spectrometry- and sequencing-based biomedical data'. En conjunto forman una huella única.

Citar esto