Ghosting suppression for incremental principal component pursuit algorithms

Paul Rodríguez, Brendt Wohlberg

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

7 Citas (Scopus)

Resumen

In video background modeling, ghosting occurs when an object that belongs to the background is assigned to the foreground. In the context of Principal Component Pursuit, this usually occurs when a moving object occludes a high contrast background object, a moving object suddenly stops, or a stationary object suddenly starts moving. Based on a previously developed incremental PCP method, we propose a novel algorithm that uses two simultaneous background estimates based on observations over the previous n1 and n2 (n1 C n2) frames in order to identify and diminish the ghosting effect. Our computational results show that the proposed method greatly improves both the subjective quality and accuracy as determined by the F-measure.

Idioma originalInglés
Título de la publicación alojada2016 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2016 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas197-201
Número de páginas5
ISBN (versión digital)9781509045457
DOI
EstadoPublicada - 19 abr. 2017
Evento2016 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2016 - Washington, Estados Unidos
Duración: 7 dic. 20169 dic. 2016

Serie de la publicación

Nombre2016 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2016 - Proceedings

Conferencia

Conferencia2016 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2016
País/TerritorioEstados Unidos
CiudadWashington
Período7/12/169/12/16

Huella

Profundice en los temas de investigación de 'Ghosting suppression for incremental principal component pursuit algorithms'. En conjunto forman una huella única.

Citar esto