TY - JOUR
T1 - Geochemistry and mineralogy of rare earth elements (REE) in bauxitic ores of the catalan coastal range, NE Spain
AU - Reinhardt, Nils
AU - Proenza, Joaquín A.
AU - Villanova-De-benavent, Cristina
AU - Aiglsperger, Thomas
AU - Bover-Arnal, Telm
AU - Torró, Lisard
AU - Salas, Ramon
AU - Dziggel, Annika
PY - 2018/12/1
Y1 - 2018/12/1
N2 - Karst bauxite deposits are currently investigated as a new resource for rare earth elements (REE) in order to avoid present and future supply shortfalls of these critical metals. The present work focuses on the geochemistry and mineralogy of the REE in karst bauxite deposits of the Catalan Coastal Range (CCR), NE-Spain. It is revealed that the studied bauxitic ores have a dominant breccia and local ooido-pisoidic and pelitomorphic texture. The bauxitic ores are mostly composed of kaolinite and hematite, as well as of lesser amounts of boehmite, diaspore, rutile and calcite. The mineralogy and major element composition indicate incomplete bauxitization of an argillaceous precursor material possibly derived from the erosion of the Mesozoic Ebro massif paleo-high. The studied bauxites are characterized by ∑REE (including Sc, Y) between 286 and 820 ppm (av. 483 ppm) and light REE to heavy REE (LREE/HREE) ratios up to 10.6. REE are mainly concentrated in phosphate minerals, identified as monazite-(Ce) and xenotime-(Y) of detrital origin and unidentified REE-phosphates of a possible authigenic origin. REE remobilization presumably took place under acidic conditions, whereas REE entrapment in the form of precipitation of authigenic rare earth minerals from percolating solutions was related to neutral to slightly alkaline conditions. During the bauxitization process no significant REE fractionation took place and the REE distribution pattern of the bauxitic ores was governed by the REE budget of the precursor material. Finally, adsorption as a main REE scavenging mechanism in the studied CCR bauxite deposits should not be considered, since the presented data did not reveal significant REE contents in Fe-and Mn-oxyhydroxides and clay minerals.
AB - Karst bauxite deposits are currently investigated as a new resource for rare earth elements (REE) in order to avoid present and future supply shortfalls of these critical metals. The present work focuses on the geochemistry and mineralogy of the REE in karst bauxite deposits of the Catalan Coastal Range (CCR), NE-Spain. It is revealed that the studied bauxitic ores have a dominant breccia and local ooido-pisoidic and pelitomorphic texture. The bauxitic ores are mostly composed of kaolinite and hematite, as well as of lesser amounts of boehmite, diaspore, rutile and calcite. The mineralogy and major element composition indicate incomplete bauxitization of an argillaceous precursor material possibly derived from the erosion of the Mesozoic Ebro massif paleo-high. The studied bauxites are characterized by ∑REE (including Sc, Y) between 286 and 820 ppm (av. 483 ppm) and light REE to heavy REE (LREE/HREE) ratios up to 10.6. REE are mainly concentrated in phosphate minerals, identified as monazite-(Ce) and xenotime-(Y) of detrital origin and unidentified REE-phosphates of a possible authigenic origin. REE remobilization presumably took place under acidic conditions, whereas REE entrapment in the form of precipitation of authigenic rare earth minerals from percolating solutions was related to neutral to slightly alkaline conditions. During the bauxitization process no significant REE fractionation took place and the REE distribution pattern of the bauxitic ores was governed by the REE budget of the precursor material. Finally, adsorption as a main REE scavenging mechanism in the studied CCR bauxite deposits should not be considered, since the presented data did not reveal significant REE contents in Fe-and Mn-oxyhydroxides and clay minerals.
M3 - Artículo
SN - 2075-163X
VL - 8
JO - Minerals
JF - Minerals
ER -