Generative models for ultrasound image reconstruction from single plane-wave simulated data

Sebastian Merino, Itamar Salazar, Roberto Lavarello

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Ultrasound image reconstruction from a single plane-wave transmission is required for many applications, However, imaging quality can be degraded when using conventional delay-and-sum (DAS) beamforming. This paper evaluates the performance of diffusion models (Diff) and conditional Generative Adversarial Networks (cGAN) for ultrasound image reconstruction when using the same base architecture, a UNet. Models were trained using a simulated dataset of 12500 acquisitions. Each sample featured a randomly positioned anechoic cyst in a medium with uniform sound speed, with downsampled IQ channel data serving as input. Results demonstrated that diffusion models could generate B-mode images of similar or improved contrast than the cGANs. On average, they exhibited a higher contrast-to-noise ratio (1.32 for Diff vs 1.11 for cGAN) and gCNR (0.83 for Diff vs 0.76 for cGAN).

Idioma originalInglés
Título de la publicación alojada2024 IEEE UFFC Latin America Ultrasonics Symposium, LAUS 2024 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350349085
DOI
EstadoPublicada - 2024
Evento2nd IEEE UFFC Latin America Ultrasonics Symposium, LAUS 2024 - Montevideo, Uruguay
Duración: 8 may. 202410 may. 2024

Serie de la publicación

Nombre2024 IEEE UFFC Latin America Ultrasonics Symposium, LAUS 2024 - Proceedings

Conferencia

Conferencia2nd IEEE UFFC Latin America Ultrasonics Symposium, LAUS 2024
País/TerritorioUruguay
CiudadMontevideo
Período8/05/2410/05/24

Huella

Profundice en los temas de investigación de 'Generative models for ultrasound image reconstruction from single plane-wave simulated data'. En conjunto forman una huella única.

Citar esto