Gaussian hierarchical Bayesian clustering Algorithm

Rafael Eduardo Ruviaro Christ, Edwin Villanueva Talavera, Carlos Dias Maciel

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

This paper presents the Gaussian Hierarchical Bayesian Clustering algorithm (GHBC). A new method for agglomerative hierarchical clustering derived from the HBC algorithm. GHBC has several advantages over traditional agglomerative algorithms. (1) It reduces the limitations due time and memory complexity. (2) It uses a bayesian posterior probability criterion to decide on merging clusters (modeling clusters as Gaussian distributions) rather than ad-hoc distance metrics. (3) It automatically finds the partition that most closely matches the data using Bayesian Information Criterion (BIC). Finally, experimental results on synthetic and real data show that GHBC can cluster data as the best classical agglomerative andpartitional algorithms.

Idioma originalInglés
Título de la publicación alojadaProceedings of The 7th International Conference on Intelligent Systems Design and Applications, ISDA 2007
Páginas133-137
Número de páginas5
DOI
EstadoPublicada - 2007
Publicado de forma externa
Evento7th International Conference on Intelligent Systems Design and Applications, ISDA'07 - Rio de Janeiro, Brasil
Duración: 22 oct. 200724 oct. 2007

Serie de la publicación

NombreProceedings of The 7th International Conference on Intelligent Systems Design and Applications, ISDA 2007

Conferencia

Conferencia7th International Conference on Intelligent Systems Design and Applications, ISDA'07
País/TerritorioBrasil
CiudadRio de Janeiro
Período22/10/0724/10/07

Huella

Profundice en los temas de investigación de 'Gaussian hierarchical Bayesian clustering Algorithm'. En conjunto forman una huella única.

Citar esto