Gaussian Gridmaps from Gaussian Processes for WiFi-based Robot Self-Localization in Outdoor Environments

Renato Miyagusuku, Kenta Tabata, Koichi Ozaki

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Gaussian Processes have been effectively used to learn location-to-signal-strength mappings from previously acquired observations and enable WiFi-based robot self-localization. However, the cubic computational cost for training and the quadratic cost for prediction with respect to the number of training points limits their scalability, particularly with large datasets necessary for outdoor environments. To reduce prediction cost we propose the use of Gaussian Gridmaps, a spatial representation that stores mean and variance predictions from Gaussian Processes into gridmaps. This approach reduces prediction computational cost to constant time, at the expense of some localization accuracy and increased memory usage. Our experiments demonstrate the feasibility of this method for outdoor localization and examine the impact of quantization and grid resolution on localization performance.

Idioma originalInglés
Título de la publicación alojada2025 IEEE/SICE International Symposium on System Integration, SII 2025
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas1593-1598
Número de páginas6
ISBN (versión digital)9798331531614
DOI
EstadoPublicada - 2025
Publicado de forma externa
Evento2025 IEEE/SICE International Symposium on System Integration, SII 2025 - Munich, Alemania
Duración: 21 ene. 202524 ene. 2025

Serie de la publicación

Nombre2025 IEEE/SICE International Symposium on System Integration, SII 2025

Conferencia

Conferencia2025 IEEE/SICE International Symposium on System Integration, SII 2025
País/TerritorioAlemania
CiudadMunich
Período21/01/2524/01/25

Huella

Profundice en los temas de investigación de 'Gaussian Gridmaps from Gaussian Processes for WiFi-based Robot Self-Localization in Outdoor Environments'. En conjunto forman una huella única.

Citar esto