Proyectos por año
Resumen
Let TNd, d≥ 2 , be the discrete d-dimensional torus with Nd points. Place a particle at each site of TNd and let them evolve as independent, nearest-neighbor, symmetric, continuous-time random walks. Each time two particles meet, they coalesce into one. Denote by CN the first time the set of particles is reduced to a singleton. Cox (Ann Probab 17:1333–1366, 1989) proved the existence of a time-scale θN for which CN/ θN converges to the sum of independent exponential random variables. Denote by ZtN the total number of particles at time t. We prove that the sequence of Markov chains (ZtθNN)t≥0 converges to the total number of partitions in Kingman’s coalescent.
Idioma original | Español |
---|---|
Páginas (desde-hasta) | 1172-1206 |
Número de páginas | 35 |
Publicación | Journal of Statistical Physics |
Volumen | 177 |
Estado | Publicada - 1 dic. 2019 |
Proyectos
- 1 Activo
-
The evolution of the condensate in the zero range process
Beltran Ramirez, J. V. (Investigador principal) & Farfan Vargas, J. S. (Otro)
20/05/16 → …
Proyecto: Investigación