From Coalescing Random Walks on a Torus to Kingman’s Coalescent

J. Beltrán, E. Chavez, C. Landim

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

Let TNd, d≥ 2 , be the discrete d-dimensional torus with Nd points. Place a particle at each site of TNd and let them evolve as independent, nearest-neighbor, symmetric, continuous-time random walks. Each time two particles meet, they coalesce into one. Denote by CN the first time the set of particles is reduced to a singleton. Cox (Ann Probab 17:1333–1366, 1989) proved the existence of a time-scale θN for which CN/ θN converges to the sum of independent exponential random variables. Denote by ZtN the total number of particles at time t. We prove that the sequence of Markov chains (ZtθNN)t≥0 converges to the total number of partitions in Kingman’s coalescent.
Idioma originalEspañol
Páginas (desde-hasta)1172-1206
Número de páginas35
PublicaciónJournal of Statistical Physics
Volumen177
EstadoPublicada - 1 dic. 2019

Citar esto