Foliations and webs inducing Galois coverings

Andrés Beltrán, Maycol Falla Luza, David Marín, Marcel Nicolau

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

We introduce the notion of Galois holomorphic foliation on the complex projective space as that of foliations whose Gauss map is a Galois covering when restricted to an appropriate Zariski open subset. First, we establish general criteria assuring that a rational map between projective manifolds of the same dimension defines a Galois covering. Then, these criteria are used to give a geometric characterization of Galois foliations in terms of their inflection divisor and their singularities. We also characterize Galois foliations on P2 admitting continuous symmetries, obtaining a complete classification of Galois homogeneous foliations.
Idioma originalEspañol
Páginas (desde-hasta)3768-3827
Número de páginas60
PublicaciónInternational Mathematics Research Notices
Volumen2016
EstadoPublicada - 1 ene. 2016

Citar esto