Fast convolutional sparse coding with separable filters

Gustavo Silva, Jorge Quesada, Paul Rodríguez, Brendt Wohlberg

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

13 Citas (Scopus)

Resumen

Convolutional sparse representations (CSR) of images are receiving increasing attention as an alternative to the usual independent patch-wise application of standard sparse representations. For CSR the dictionary is a filter bank of non-separable 2D filters, and the representation itself can be viewed as the synthesis dual of the analysis representation provided by a single level of a convolutional neural network (CNN). The current state-of-the-art convolutional sparse coding (CSC) algorithms achieve their computational efficiency by applying the convolutions in the frequency domain. It has been shown that any given 2D non-separable filter bank can be approximated as a linear combination of a relatively small number of separable filters. This approximation has been exploited for computationally efficient CNN implementations, but has thus far not been considered for convolutional sparse coding. In this paper we propose a computationally efficient algorithm, that apply the convolution in the spatial domain, to solve the CSC problem when the corresponding dictionary filters are separable. Our algorithm, based on the ISTA framework, use a two-term penalty function to attain competitive results when compared to the state-of-the-art methods in terms of computational performance, sparsity and reconstruction quality.

Idioma originalInglés
Título de la publicación alojada2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas6035-6039
Número de páginas5
ISBN (versión digital)9781509041176
DOI
EstadoPublicada - 16 jun. 2017
Evento2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - New Orleans, Estados Unidos
Duración: 5 mar. 20179 mar. 2017

Serie de la publicación

NombreICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (versión impresa)1520-6149

Conferencia

Conferencia2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017
País/TerritorioEstados Unidos
CiudadNew Orleans
Período5/03/179/03/17

Huella

Profundice en los temas de investigación de 'Fast convolutional sparse coding with separable filters'. En conjunto forman una huella única.

Citar esto