Fast Convolutional Sparse Coding with ℓ0 Penalty

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

3 Citas (Scopus)

Resumen

Given a set of dictionary filters, the most widely used formulation of the convolutional sparse coding (CSC) problem is Convolutional BPDN (CBPDN), in which an image is represented as a sum over a set of convolutions of coefficient maps; usually, the coefficient maps are ℓ1-norm penalized in order to enforce a sparse solution. Recent theoretical results, have provided meaningful guarantees for the success of popular ℓ1-norm penalized CSC algorithms in the noiseless case. However, experimental results related to the ℓ0-norm penalized CSC case have not been addressed.In this paper we propose a two-step ℓ0-norm penalized CSC (ℓ0-CSC) algorithm, which outperforms (convergence rate, reconstruction performance and sparsity) known solutions to the ℓ0-CSC problem. Furthermore, our proposed algorithm, which is a convolutional extension of our previous work [1], originally develop for the ℓ0 regularized optimization problem, includes an escape strategy to avoid being trapped in a saddle points or in inferior local solutions, which are common in nonconvex optimization problems, such those that use the ℓ0-norm as the penalty function.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 2018 IEEE 25th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2018
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781538654903
DOI
EstadoPublicada - 6 nov. 2018
Evento25th IEEE International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2018 - Lima, Perú
Duración: 8 ago. 201810 ago. 2018

Serie de la publicación

NombreProceedings of the 2018 IEEE 25th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2018

Conferencia

Conferencia25th IEEE International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2018
País/TerritorioPerú
CiudadLima
Período8/08/1810/08/18

Huella

Profundice en los temas de investigación de 'Fast Convolutional Sparse Coding with ℓ0 Penalty'. En conjunto forman una huella única.

Citar esto