Fast and Scalable 2D Convolutions and Cross-correlations for Processing Image Databases and Videos on CPUs

Cesar Carranza, Daniel Llamocca, Marios Pattichis

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

The dominant use of Convolutional Neural Networks (CNNs) in several image and video analysis tasks necessitates a careful re-evaluation of the underlying software libraries for computing them for large-scale image and video databases. We focus our attention on developing methods that can be applied to large image databases or videos of large image sizes.We develop a method that maximizes throughput through the use of vector-based memory I/O and optimized 2D FFT libraries that run on all available physical cores. We also show how to decompose arbitrarily large images into smaller, optimal blocks that can be effectively processed through the use of overlap-and-add. Our approach outperforms Tensorflow for 5 × 5 kernels and significantly outperforms Tensorflow for 11 × 11 kernels.

Idioma originalInglés
Título de la publicación alojada2020 IEEE Southwest Symposium on Image Analysis and Interpretation, SSIAI 2020 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas70-73
Número de páginas4
ISBN (versión digital)9781728157450
DOI
EstadoPublicada - mar. 2020
Evento2020 IEEE Southwest Symposium on Image Analysis and Interpretation, SSIAI 2020 - Santa Fe, Estados Unidos
Duración: 29 mar. 202031 mar. 2020

Serie de la publicación

NombreProceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation
Volumen2020-March

Conferencia

Conferencia2020 IEEE Southwest Symposium on Image Analysis and Interpretation, SSIAI 2020
País/TerritorioEstados Unidos
CiudadSanta Fe
Período29/03/2031/03/20

Huella

Profundice en los temas de investigación de 'Fast and Scalable 2D Convolutions and Cross-correlations for Processing Image Databases and Videos on CPUs'. En conjunto forman una huella única.

Citar esto