Extensions of linear cycle sets and cohomology

Jorge A. Guccione, Juan J. Guccione, Christian Valqui

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

We generalize the cohomology theory for linear cycle sets introduced by Lebed and Vendramin. Our cohomology classifies extensions of linear cycle sets by trivial ideals, whereas the cohomology of Lebed and Vendramin only deals with central ideals I (which are automatically trivial). Therefore our theory gives an analog to the theory of extensions of braces by trivial ideals constructed by Bachiller, but from a cohomological point of view. We also study the general notions of extensions of linear cycle sets and the equivalence of extensions.

Idioma originalInglés
Número de artículo15
PublicaciónEuropean Journal of Mathematics
Volumen9
N.º1
DOI
EstadoPublicada - mar. 2023
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Extensions of linear cycle sets and cohomology'. En conjunto forman una huella única.

Citar esto