Exploring the Association between Multidimensional Poverty and Depression Using Structural Equation Models

Jhonatan Clausen, Nicolas Barrantes, Elena Caballero, Henry Guillén

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

Using data from the 2022 Peruvian Demographic and Health Survey, we estimated structural equation models to explore the association between two unobservable latent variables: multidimensional poverty and major depressive disorder. We estimated the former using the ten indicators of non-income deprivation included in the global Multidimensional Poverty Index, whereas we used the items of the Patient Health Questionnaire-9 to estimate the onset of major depression. We found that living in multidimensional poverty was positively and significantly associated with experiencing symptoms of major depression. This result held valid after controlling for other variables such as gender, ethnicity, and area of residence. Our study contributes to the relatively scarce yet growing literature that uses structural equation modeling to explore the association between multidimensional poverty and variables related to mental health in low- and middle-income countries. Overall, our findings provide relevant insights for policymakers in Peru and other similar low- and middle-income countries that could be useful in developing interventions to enhance the mental health of people living in multidimensional poverty.

Idioma originalInglés
Páginas (desde-hasta)727-747
Número de páginas21
PublicaciónApplied Research in Quality of Life
Volumen19
N.º2
DOI
EstadoPublicada - abr. 2024

Huella

Profundice en los temas de investigación de 'Exploring the Association between Multidimensional Poverty and Depression Using Structural Equation Models'. En conjunto forman una huella única.

Citar esto