Experimental Assessment of Heterogeneous Fuzzy Regression Trees

José Luis Corcuera Bárcena, Pietro Ducange, Riccardo Gallo, Francesco Marcelloni, Alessandro Renda, Fabrizio Ruffini

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Fuzzy Regression Trees (FRTs) are widely acknowledged as highly interpretable ML models, capable of dealing with noise and/or uncertainty thanks to the adoption of fuzziness. The accuracy of FRTs, however, strongly depends on the polynomial function adopted in the leaf nodes. Indeed, their modelling capability increases with the order of the polynomial, even if at the cost of greater complexity and reduced interpretability. In this paper we introduce the concept of Heterogeneous FRT: the order of the polynomial function is selected on each leaf node and can lead either to a zero-order or a first-order approximation. In our experimental assessment, the percentage of the two approximation orders is varied to cover the whole spectrum from pure zero-order to pure first-order FRTs, thus allowing an in-depth analysis of the trade-off between accuracy and interpretability. We present and discuss the results in terms of accuracy and interpretability obtained by the corresponding FRTs on nine benchmark datasets.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 15th International Joint Conference on Computational Intelligence, IJCCI 2023
EditoresNiki van Stein, Francesco Marcelloni, H. K. Lam, Marie Cottrell, Joaquim Filipe
EditorialScience and Technology Publications, Lda
Páginas376-384
Número de páginas9
ISBN (versión digital)9789897586743
DOI
EstadoPublicada - 2023
Publicado de forma externa
Evento15th International Joint Conference on Computational Intelligence, IJCCI 2023 - Hybrid, Rome, Italia
Duración: 13 nov. 202315 nov. 2023

Serie de la publicación

NombreInternational Joint Conference on Computational Intelligence
ISSN (versión digital)2184-3236

Conferencia

Conferencia15th International Joint Conference on Computational Intelligence, IJCCI 2023
País/TerritorioItalia
CiudadHybrid, Rome
Período13/11/2315/11/23

Huella

Profundice en los temas de investigación de 'Experimental Assessment of Heterogeneous Fuzzy Regression Trees'. En conjunto forman una huella única.

Citar esto