Evaluation of Primitive Extraction Methods from Point Clouds of Cultural Heritage Buildings

Carlos Pérez-Sinticala, Romain Janvier, Xavier Brunetaud, Sylvie Treuillet, Rafael Aguilar, Benjamín Castañeda

Producción científica: Capítulo del libro/informe/acta de congresoCapítulorevisión exhaustiva

3 Citas (Scopus)


This article focuses on the development of tools for automatic recognition and segmentation of the main geometrical characteristics of heritage buildings (walls, towers, roofs, slopes, etc.) to simplify a 3D point cloud into simpler model based on geometric primitives. After evaluation of well known techniques for point cloud segmentation, an hybrid method based on region growing algorithm and primitive fitting by Sample Consensus appears as the most successful. Then, a refinement process is applied by grouping close-by points into voxels and assigning them to the closest primitive. The final algorithm is tested in the front wall of the castle of Chambord, France showing a 94.40% coincidence between the geometric primitives found and manual ground truth. This algorithm might prove useful for obtaining simpler models of cultural heritage structures, which can be used for storage, manipulation and even other types of analysis such as finite element models.

Idioma originalInglés
Título de la publicación alojadaRILEM Bookseries
EditorialSpringer Netherlands
Número de páginas10
EstadoPublicada - 2019

Serie de la publicación

NombreRILEM Bookseries
ISSN (versión impresa)2211-0844
ISSN (versión digital)2211-0852


Profundice en los temas de investigación de 'Evaluation of Primitive Extraction Methods from Point Clouds of Cultural Heritage Buildings'. En conjunto forman una huella única.

Citar esto