Resumen
A detail analysis of electrical and photoelectrical properties of hybrid organic-inorganic heterojunction solar cells poly(3-hexylthiophene) (P3HT)/n-Si, fabricated by spin-coating of the polymeric thin film onto oxide passivated Si(1 0 0) surface, was carried out within the temperature ranging from 283 to 333 K. The dominating current transport mechanisms were established to be the multistep tunnel-recombination and space charge limited current at forward bias and leakage current through the shunt resistance at reverse bias. A simple approach was developed and successfully applied for the correct analysis of the high frequency C-V characteristics of hybrid heterojunction solar cells. The P3HT/n-Si solar cell under investigation possessed the following photoelectric parameters: Jsc = 16.25 mA/cm2, Voc = 0.456 V, FF = 0.45, η = 3.32% at 100 mW/cm2 AM 1.5 illumination. The light dependence of the current transport mechanisms through the P3HT/n-Si hybrid solar cells is presented quantitatively and discussed in detail.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 3109-3116 |
Número de páginas | 8 |
Publicación | Organic Electronics |
Volumen | 14 |
N.º | 11 |
DOI | |
Estado | Publicada - 2013 |
Publicado de forma externa | Sí |