Efficient separable filter estimation using rank-1 convolutional dictionary learning

Gustavo Silva, Jorge Quesada, Paul Rodriguez

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

5 Citas (Scopus)

Resumen

Natively learned separable filters for Convolutional Sparse Coding (CSC) have recently been shown to provide equivalent reconstruction performance to their non-separable counterparts (as opposed to approximated separable filters), while reducing computational cost. Furthermore, multiple approaches to optimize the Dictionary Update stage of Convolutional Dictionary Learning (CDL) methods based on the Accelerated Proximal Gradient (APG) framework have recently been proposed.In this paper, we propose a novel separable filter learning method based on the rank-1 decomposition, and test its performance against the existing separable approaches. In adittion, we evaluate how APG-based variations couple with our proposed method in order to improve computational runtime. Our results show that the filters learned through our proposed method match the performance of other natively-learned separable filters, while providing a significant runtime improvement in the learning process through our APG-based implementation.

Idioma originalInglés
Título de la publicación alojada2018 IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2018 - Proceedings
EditoresNelly Pustelnik, Zheng-Hua Tan, Zhanyu Ma, Jan Larsen
EditorialIEEE Computer Society
ISBN (versión digital)9781538654774
DOI
EstadoPublicada - 31 oct. 2018
Evento28th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2018 - Aalborg, Dinamarca
Duración: 17 set. 201820 set. 2018

Serie de la publicación

NombreIEEE International Workshop on Machine Learning for Signal Processing, MLSP
Volumen2018-September
ISSN (versión impresa)2161-0363
ISSN (versión digital)2161-0371

Conferencia

Conferencia28th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2018
País/TerritorioDinamarca
CiudadAalborg
Período17/09/1820/09/18

Huella

Profundice en los temas de investigación de 'Efficient separable filter estimation using rank-1 convolutional dictionary learning'. En conjunto forman una huella única.

Citar esto