Efficient on-line training of recurrent networks for identification and optimal control of nonlinear systems

Antonio Moran, Masao Nagai

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

5 Citas (Scopus)

Resumen

Static forward networks and recurrent networks with feedback connections are the two most common types of networks applied to dynamical systems. Recurrent networks possessing memory and having dynamics can overcome the drawbacks and limitations of forward networks when applied to dynamical systems. This paper analyzes the implementation and on-line learning of recurrent networks for the identification and optimal control of nonlinear dynamical systems. An efficient procedure to improve and accelerate the on-line neuro-identification and optimal neuro-controller training process is presented. The analytical results are applied to the optimal control of a nonlinear high-speed ground vehicle.

Idioma originalInglés
Título de la publicación alojadaProceedings of the International Joint Conference on Neural Networks
Editores Anon
EditorialPubl by IEEE
Páginas1789-1792
Número de páginas4
ISBN (versión impresa)0780314212
EstadoPublicada - 1993
Publicado de forma externa
EventoProceedings of 1993 International Joint Conference on Neural Networks. Part 2 (of 3) - Nagoya, Jpn
Duración: 25 oct. 199329 oct. 1993

Serie de la publicación

NombreProceedings of the International Joint Conference on Neural Networks
Volumen2

Conferencia

ConferenciaProceedings of 1993 International Joint Conference on Neural Networks. Part 2 (of 3)
CiudadNagoya, Jpn
Período25/10/9329/10/93

Huella

Profundice en los temas de investigación de 'Efficient on-line training of recurrent networks for identification and optimal control of nonlinear systems'. En conjunto forman una huella única.

Citar esto