Efficient minimization method for a generalized total variation functional

Paul Rodríguez, Brendt Wohlberg

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

212 Citas (Scopus)


Replacing the ℓ2 data fidelity term of the standard Total Variation (TV) functional with an ℓ1 data fidelity term has been found to offer a number of theoretical and practical benefits. Efficient algorithms for minimizing this ℓ1-TV functional have only recently begun to be developed, the fastest of which exploit graph representations, and are restricted to the denoising problem. We describe an alternative approach that minimizes a generalized TV functional, including both ℓ2-TV and ℓM1 -TV as special cases, and is capable of solving more general inverse problems than denoising (e.g., deconvolution). This algorithm is competitive with the graph-based methods in the denoising case, and is the fastest algorithm of which we are aware for general inverse problems involving a nontrivial forward linear operator.

Idioma originalInglés
Páginas (desde-hasta)322-332
Número de páginas11
PublicaciónIEEE Transactions on Image Processing
EstadoPublicada - 2009


Profundice en los temas de investigación de 'Efficient minimization method for a generalized total variation functional'. En conjunto forman una huella única.

Citar esto