Efficient Convolutional Dictionary Learning Using Partial Update Fast Iterative Shrinkage-Thresholding Algorithm

Gustavo Silva, Paul Rodriguez

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

11 Citas (Scopus)

Resumen

Convolutional sparse representations allow modeling an entire image as an alternative to the more common independent patch-based formulations. Although many approaches have been proposed to efficiently solve the convolutional dictionary learning (CDL) problem, their computational performance is constrained by the dictionary update stage. In this work, we include two improvements to existing methods (i) a dictionary update based on Accelerated Proximal Gradient (APG) approach computed in the frequency domain and (ii) a new update model reminiscent of the Block Gauss Seidel (BGS) method. Our experimental results show that both improvements provide a significant speedup with respect to the state-of-the-art methods. In addition, dictionaries learned by our proposed method yield matching performance in terms of reconstruction and sparsity metrics in a denoising task.

Idioma originalInglés
Título de la publicación alojada2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas4674-4678
Número de páginas5
ISBN (versión impresa)9781538646588
DOI
EstadoPublicada - 10 set. 2018
Evento2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Calgary, Canadá
Duración: 15 abr. 201820 abr. 2018

Serie de la publicación

NombreICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volumen2018-April
ISSN (versión impresa)1520-6149

Conferencia

Conferencia2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018
País/TerritorioCanadá
CiudadCalgary
Período15/04/1820/04/18

Huella

Profundice en los temas de investigación de 'Efficient Convolutional Dictionary Learning Using Partial Update Fast Iterative Shrinkage-Thresholding Algorithm'. En conjunto forman una huella única.

Citar esto