Diagnosis of Pneumoconiosis with Machine Learning

Viviana Hanampa, Jonh Astete, Benjamin Castaneda, Stefano Romero

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Pneumoconiosis encompasses a group of lung diseases caused by inhaling dust particles. Frequently recognized as an occupational disease, it primarily affects workers in the mining industry. This paper details the use of machine learning algorithms to automate the diagnostic process in two distinct stages: Stage 1 involves lung segmentation, and Stage 2 focuses on classifying X-rays to determine the presence or absence of pneumoconiosis. In Stage 1, a U-Net network is employed for semantic segmentation, achieving an accuracy of 94% on test data and an average accuracy of 98.35% on validation data. Stage 2 introduces a comparative system that complies with the ILO's standard practical guidelines for diagnosis. This stage evaluates four machine learning techniques: Support Vector Machine (SVM), Random Forest, and Naive Bayes and XGBoost. Our findings indicate that dividing the lung into six segments yields the most balanced metrics (including accuracy, precision, F1 score, and recall) across these models. Notably, the XGBoost model outperforms others in this configuration, achieving a remarkable precision of 98%, an accuracy of 90% and a F1 of 84%.

Idioma originalInglés
Título de la publicación alojada46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350371499
DOI
EstadoPublicada - 2024
Evento46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024 - Orlando, Estados Unidos
Duración: 15 jul. 202419 jul. 2024

Serie de la publicación

NombreProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (versión impresa)1557-170X

Conferencia

Conferencia46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024
País/TerritorioEstados Unidos
CiudadOrlando
Período15/07/2419/07/24

Huella

Profundice en los temas de investigación de 'Diagnosis of Pneumoconiosis with Machine Learning'. En conjunto forman una huella única.

Citar esto