Diagnosis of oral cancer using deep learning algorithms

Título traducido de la contribución: Diagnóstico de cáncer oral mediante algoritmos de aprendizaje profundo

Mayra Alejandra Dávila Olivos, Henry Miguel Herrera Del Águila, Félix Melchor Santos López

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

Objective. The aim of this study was to use deep learning for the automatic diagnosis of oral cancer, employing images of the lips, mucosa, and oral cavity. A deep convolutional neural network (CNN) model, augmented with data, was proposed to enhance oral cancer diagnosis. Materials and methods. We developed a Mobile Net deep CNN designed to detect and classify oral cancer in the lip, mucosa, and oral cavity areas. The dataset comprised 131 images, including 87 positive and 44 negative cases. Additionally, we expanded the dataset by varying cropping, focus, rotation, brightness, and flipping. The diagnostic performance of the proposed CNN was evaluated by calculating accuracy, precision, recall, F1 score, and area under the curve (AUC) for oral cancer. Results. The CNN achieved an overall diagnostic accuracy of 90.9% and an AUC of 0.91 with the dataset for oral cancer. Conclusion. Despite the limited number of images of lips, mucosa, and oral cavity, the CNN method developed for the automatic diagnosis of oral cancer demonstrated high accuracy, precision, recall, F1 score, and AUC when augmented with data.

Título traducido de la contribuciónDiagnóstico de cáncer oral mediante algoritmos de aprendizaje profundo
Idioma originalInglés
Páginas (desde-hasta)58-68
Número de páginas11
PublicaciónIngenius
Volumen2024-July-December
N.º32
DOI
EstadoPublicada - 1 jul. 2024
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Diagnóstico de cáncer oral mediante algoritmos de aprendizaje profundo'. En conjunto forman una huella única.

Citar esto