Detection of Cyberattacks in SCADA Water Distribution Systems Using Machine Learning: A Systematic Review of the Literature

Amanda Liliana Galarza Yallico, Félix Melchor Santos López

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Various industries use supervisory control and data acquisition (SCADA) systems to monitor and control different processes, one of which is water distribution systems. In recent years, intentional cyberattacks targeting these systems have increased. It is essential to protect them, and intelligent technologies, such as machine learning, can guarantee their productivity and safety. The objective of this study is to describe the different models, techniques, metrics, datasets, and machine learning algorithms applied in the detection of cyberattacks through a systematic review of the literature using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) methodology. The databases consulted were Web of Science, Scopus, Springer, ScienceDirect, and IEEE, from which 656 articles were retrieved. An exhaustive bibliometric analysis was carried out, and the 40 most relevant articles were selected. The results show that themost used models are artificial neural networks (five mentions) and K-nearest neighbors (five mentions). In addition, one article had an accuracy metric of 99.79%.

Idioma originalInglés
Título de la publicación alojadaProceedings of the International Conference on Computer Science, Electronics and Industrial Engineering (CSEI 2023) - Advances in Computer Sciences - Exploring Innovations at the Intersection of Computing Technologies
EditoresMarcelo V. Garcia, Carlos Gordón-Gallegos, Asier Salazar-Ramírez, Carlos Nuñez
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas428-444
Número de páginas17
ISBN (versión impresa)9783031692277
DOI
EstadoPublicada - 2024
Publicado de forma externa
EventoInternational Conference on Computer Science, Electronics and Industrial Engineering, CSEI 2023 - Ambato, Ecuador
Duración: 6 nov. 202310 nov. 2023

Serie de la publicación

NombreLecture Notes in Networks and Systems
Volumen775 LNNS
ISSN (versión impresa)2367-3370
ISSN (versión digital)2367-3389

Conferencia

ConferenciaInternational Conference on Computer Science, Electronics and Industrial Engineering, CSEI 2023
País/TerritorioEcuador
CiudadAmbato
Período6/11/2310/11/23

Huella

Profundice en los temas de investigación de 'Detection of Cyberattacks in SCADA Water Distribution Systems Using Machine Learning: A Systematic Review of the Literature'. En conjunto forman una huella única.

Citar esto