Detection of Geometric Elements in Axonometric Projection Images Using Computer Vision Techniques

Juan Pablo Apaza Condori, Edwin Villanueva

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

The development of three-dimensional geometry problem-solving skills is important for engineering students and professionals. Acquiring these skills through traditional methods often presents challenges for students, mainly because the teaching material is presented in plain images with which students cannot interact to gain greater understanding. This paper describes the development of a computational tool designed to transform plain axonometric projection images into 3D models compatible with CAD design software. To achieve this, we have engineered deep learning models to accurately classify, locate, and identify geometric elements within axonometric images. Our experimental results highlight the enhanced performance of the Faster-RCNN model, which achieved an 81 % mean Average Precision (mAP) on test images. This tool can help engineering students to have a better learning experience, allowing them to interact with three-dimensional representations and significantly improve their spatial understanding.

Idioma originalInglés
Título de la publicación alojadaIEEE Andescon, ANDESCON 2024 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350355284
DOI
EstadoPublicada - 2024
Evento12th IEEE Andescon, ANDESCON 2024 - Cusco, Perú
Duración: 11 set. 202413 set. 2024

Serie de la publicación

NombreIEEE Andescon, ANDESCON 2024 - Proceedings

Conferencia

Conferencia12th IEEE Andescon, ANDESCON 2024
País/TerritorioPerú
CiudadCusco
Período11/09/2413/09/24

Huella

Profundice en los temas de investigación de 'Detection of Geometric Elements in Axonometric Projection Images Using Computer Vision Techniques'. En conjunto forman una huella única.

Citar esto