Detecting Anomalies in Time-Varying Media Crime News Using Tensor Decomposition

Hugo Alatrista-Salas, Pablo Lavado, Juandiego Morzan, Miguel Nuñez-del-Prado, Gustavo Yamada

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Nowadays, the mass media surround us in many forms. Newspapers, radio and TV reports about many topics, including the crime committed in a region. Indirectly, the media provide statistics about crime incidents, and policymakers could focus their attention on the unusual number of crime news (c.f., regular events) for evaluating and proposing new public policies. In the present work, the Tensor decomposition is used to detect an unusual amount of crime news. To achieve this goal, two rejection criterion techniques were compared. Also, several image binarization techniques were used to validate our proposal. Our result can be used to detect an unusual amount of crime news as a proxy of unusual crime activity.

Idioma originalInglés
Título de la publicación alojadaInformation Management and Big Data - 6th International Conference, SIMBig 2019, Proceedings
EditoresJuan Antonio Lossio-Ventura, Nelly Condori-Fernandez, Jorge Carlos Valverde-Rebaza
EditorialSpringer
Páginas35-45
Número de páginas11
ISBN (versión impresa)9783030461393
DOI
EstadoPublicada - 2020
Publicado de forma externa
Evento6th International Conference on Information Management and Big Data, SIMBig 2019 - Lima, Perú
Duración: 21 ago. 201923 ago. 2019

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen1070 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia6th International Conference on Information Management and Big Data, SIMBig 2019
País/TerritorioPerú
CiudadLima
Período21/08/1923/08/19

Huella

Profundice en los temas de investigación de 'Detecting Anomalies in Time-Varying Media Crime News Using Tensor Decomposition'. En conjunto forman una huella única.

Citar esto