Design and implementation of an adaptive neuro-fuzzy inference system on an FPGA used for nonlinear function generation

Henry José Block Saldaña, Carlos Silva Cárdenas

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

6 Citas (Scopus)

Resumen

This paper presents a digital system architecture for a two-input one-output zero order ANFIS (Adaptive Neuro-Fuzzy Inference System) and its implementation on an FPGA (Field Programmable Gate Array) using VHDL (VHSIC Hardware Description Language). The designed system is used for nonlinear function generation. First, a nonlinear function is chosen and off-line training is carried out using MATLAB ANFIS to obtain the premise and consequence parameters of the fuzzy rules. Then, these parameters are converted to a binary fixed-point representation and are stored in read-only memories of the VHDL code. Finally, simulations are performed to verify the system operation and to evaluate the system response time for given input data.

Idioma originalInglés
Título de la publicación alojada2010 IEEE ANDESCON Conference Proceedings, ANDESCON 2010
DOI
EstadoPublicada - 2010
Evento2010 IEEE ANDESCON Conference, ANDESCON 2010 - Bogota, Colombia
Duración: 14 set. 201017 set. 2010

Serie de la publicación

Nombre2010 IEEE ANDESCON Conference Proceedings, ANDESCON 2010

Conferencia

Conferencia2010 IEEE ANDESCON Conference, ANDESCON 2010
País/TerritorioColombia
CiudadBogota
Período14/09/1017/09/10

Huella

Profundice en los temas de investigación de 'Design and implementation of an adaptive neuro-fuzzy inference system on an FPGA used for nonlinear function generation'. En conjunto forman una huella única.

Citar esto