Resumen
Current inverse scattering methods for quantitative density imaging have limitations that keep them from practical experimental implementations. In this work, an improved approach, termed the multiple-frequency distorted Born iterative method (MF-DBIM) algorithm, was developed for imaging density variations. The MF-DBIM approach consists of inverting the wave equation by solving for a single function that depends on both sound speed and density variations at multiple frequencies. Density information was isolated by using a linear combination of the reconstructed single-frequency profiles. Reconstructions of targets using MF-DBIM from simulated data were compared with reconstructions using methods currently available in the literature, i.e., the dual-frequency DBIM (DF-DBIM) and T-matrix approaches. Useful density reconstructions, i.e., root mean square errors (RMSEs) less than 30%, were obtained with MF-DBIM even with 2% Gaussian noise in the simulated data and using frequency ranges spanning less than an order of magnitude. Therefore, the MFDBIM approach outperformed both the DF-DBIM method (which has problems converging with noise even an order of magnitude smaller) and the T-matrix method (which requires a ka factor close to unity to achieve convergence). However, the convergence of all the density imaging algorithms was compromised when imaging targets with object functions exhibiting high spatial frequency content. © 2006 IEEE.
Idioma original | Español |
---|---|
Páginas (desde-hasta) | 2471-2479 |
Número de páginas | 9 |
Publicación | IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control |
Volumen | 57 |
Estado | Publicada - 1 nov. 2010 |