Resumen
This paper presents a control scheme based on deep reinforcement learning for a two-dimensional positioning system with electromagnetic actuators. Two neuro-controllers are trained and used for controlling the X-Y position of an object. The neuro-controllers learning approach is based on the actor-critic architecture and the deep deterministic policy gradient (DDPG) algorithm using the Q-learning method. The performance of the control system is verified for different setpoints and working conditions.
Idioma original | Español |
---|---|
Título de la publicación alojada | Proceedings - 2018 4th International Conference on Control, Automation and Robotics, ICCAR 2018 |
Páginas | 268-273 |
Número de páginas | 6 |
Estado | Publicada - 13 jun. 2018 |
Publicado de forma externa | Sí |
Proyectos
-
Effect of terbium doping on the optical, electrical and luminescence properties of ITO and AZO transparent conductive thin films
Guerra Torres, J. A. (Investigador principal), Grieseler, R. (Coinvestigador), Alvaro, A. (Otro), Junior, J. (Otro), Paul David, P. D. (Otro) & Torres Fernandez, C. E. (Otro)
Proyecto: Investigación