Deep reinforcement learning based neuro-control for a two-dimensional magnetic positioning system

Eduardo Bejar, Antonio Moran Cardenas

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

13 Citas (Scopus)

Resumen

This paper presents a control scheme based on deep reinforcement learning for a two-dimensional positioning system with electromagnetic actuators. Two neuro-controllers are trained and used for controlling the X-Y position of an object. The neuro-controllers learning approach is based on the actor-critic architecture and the deep deterministic policy gradient (DDPG) algorithm using the Q-learning method. The performance of the control system is verified for different setpoints and working conditions.
Idioma originalEspañol
Título de la publicación alojadaProceedings - 2018 4th International Conference on Control, Automation and Robotics, ICCAR 2018
Páginas268-273
Número de páginas6
EstadoPublicada - 13 jun. 2018
Publicado de forma externa

Citar esto