Deep Neural Networks for ENSO Prediction in the Niño 3.4 and Niño 1+2 Regions

Kennedy Richard Gomez-Tunque, Eusebio Ingol-Blanco, Abel Mejia-Marcacuzco, Eduardo Chávarri-Velarde, Edwin Pino-Vargas

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Forecasting the El Niño-Southern Oscillation (ENSO) is one of the most challenging tasks because ENSO events show large differences in their amplitude, temporal evolution, and spatial pattern. This research discusses a deep neural network model that integrates convolutional short-term and long-term memory (ConvLSTM) to forecast the patterns of sea surface temperature that represent the evolution of ENSO over different time horizons with simultaneous space-time sequences in the Niño 3.4 and Niño 1+2 regions. Monthly gridded sea surface temperature and anomaly index data were used in El Niño regions for the period 1854-2021. In general, the methodology includes the sea surface temperature (SST) normalization of the tropical Pacific, the creation and selection of the architecture of the deep neural network model, and the training and validation. Furthermore, the forecast and evaluation of the SST and SST anomalies in space-time with the El Niño of 1982/1983 and 1997/1998 and with different time horizons for the test stage were developed. The results show a good model performance with ENSO data for El Niño 1982/1983 (training) and El Niño 1997/1998 (validation) in space and time, and with climatic indices for regions 3.4 and 1+2. The model performance was evaluated using statistical metrics of observed and forecasted data over six months in the equatorial Pacific Ocean (latitude 10°S-10°N and longitude 140°E-80°W). In general, all the metrics used to evaluate the accuracy and forecast of the model show a range from good to excellent for both El Niño regions in the six months of forecast.

Idioma originalInglés
Título de la publicación alojadaWorld Environmental and Water Resources Congress 2023
Subtítulo de la publicación alojadaAdaptive Planning and Design in an Age of Risk and Uncertainty - Selected Papers from World Environmental and Water Resources Congress 2023
EditoresSajjad Ahmad, Regan Murray
EditorialAmerican Society of Civil Engineers (ASCE)
Páginas307-316
Número de páginas10
ISBN (versión digital)9780784484852
DOI
EstadoPublicada - 2023
Publicado de forma externa
EventoWorld Environmental and Water Resources Congress 2023: Adaptive Planning and Design in an Age of Risk and Uncertainty - Henderson, Estados Unidos
Duración: 21 may. 202325 may. 2023

Serie de la publicación

NombreWorld Environmental and Water Resources Congress 2023: Adaptive Planning and Design in an Age of Risk and Uncertainty - Selected Papers from World Environmental and Water Resources Congress 2023

Conferencia

ConferenciaWorld Environmental and Water Resources Congress 2023: Adaptive Planning and Design in an Age of Risk and Uncertainty
País/TerritorioEstados Unidos
CiudadHenderson
Período21/05/2325/05/23

Huella

Profundice en los temas de investigación de 'Deep Neural Networks for ENSO Prediction in the Niño 3.4 and Niño 1+2 Regions'. En conjunto forman una huella única.

Citar esto