Deep Learning Models for Emotion Classification in Human Robot Interaction Platforms

Jose Balbuena, Cesar Beltran

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

3 Citas (Scopus)

Resumen

Human Robot Interaction (HRI) main purpose is to improve the communication between robots and people, in special the service robots which principal function is interacting with users. Service robots could be virtual or physical, such as a chatbot or humanoid robot. The increase of internet access and the use of online services have produced an exponentially use of chatbots. This situation generate people spending more time using this technology and trying to humanize it. Therefore, giving robots emotional capabilities have become an important issue in the field. For this reason, the purpose of this article is to analyzed and compared the performance of common deep learning techniques (CNN, RNN) that could be used as a emotion classifier for HRI platforms such a chatbots or humanoid robots. Two kind of input signals were evaluated: Text and images of faces. In addition, different metrics were selected to evaluate the accuracy and time performance of the models.

Idioma originalInglés
Título de la publicación alojada2022 2nd International Conference on Image Processing and Robotics, ICIPRob 2022
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781665407717
DOI
EstadoPublicada - 2022
Evento2nd International Conference on Image Processing and Robotics, ICIPRob 2022 - Colombo, Sri Lanka
Duración: 12 mar. 202213 mar. 2022

Serie de la publicación

Nombre2022 2nd International Conference on Image Processing and Robotics, ICIPRob 2022

Conferencia

Conferencia2nd International Conference on Image Processing and Robotics, ICIPRob 2022
País/TerritorioSri Lanka
CiudadColombo
Período12/03/2213/03/22

Huella

Profundice en los temas de investigación de 'Deep Learning Models for Emotion Classification in Human Robot Interaction Platforms'. En conjunto forman una huella única.

Citar esto