Deep Learning-Based Reconstruction for Cardiac MRI: A Review

Julio A. Oscanoa, Matthew J. Middione, Cagan Alkan, Mahmut Yurt, Michael Loecher, Shreyas S. Vasanawala, Daniel B. Ennis

Producción científica: Contribución a una revistaArtículo de revisiónrevisión exhaustiva

22 Citas (Scopus)

Resumen

Cardiac magnetic resonance (CMR) is an essential clinical tool for the assessment of cardiovascular disease. Deep learning (DL) has recently revolutionized the field through image reconstruction techniques that allow unprecedented data undersampling rates. These fast acquisitions have the potential to considerably impact the diagnosis and treatment of cardiovascular disease. Herein, we provide a comprehensive review of DL-based reconstruction methods for CMR. We place special emphasis on state-of-the-art unrolled networks, which are heavily based on a conventional image reconstruction framework. We review the main DL-based methods and connect them to the relevant conventional reconstruction theory. Next, we review several methods developed to tackle specific challenges that arise from the characteristics of CMR data. Then, we focus on DL-based methods developed for specific CMR applications, including flow imaging, late gadolinium enhancement, and quantitative tissue characterization. Finally, we discuss the pitfalls and future outlook of DL-based reconstructions in CMR, focusing on the robustness, interpretability, clinical deployment, and potential for new methods.

Idioma originalInglés
Número de artículo334
PublicaciónBioengineering
Volumen10
N.º3
DOI
EstadoPublicada - mar. 2023
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Deep Learning-Based Reconstruction for Cardiac MRI: A Review'. En conjunto forman una huella única.

Citar esto