Deep Learning-aided Spatially-Weighted Ultrasound Attenuation Estimation

José Timaná, Sebastian Merino, Roberto Lavarello

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Quantitative ultrasound attenuation imaging shows promise for clinical applications. Among attenuation coefficient slope (ACS) estimation techniques, the Regularized Spectral Log Difference (RSLD) method enhances the trade-off between spatial resolution and estimation precision through total variation regularization, but it is negatively affected by changes in the backscatter coefficient (BSC). A recent method, Spatially- Weighted Image Fidelity and regularization Terms (SWIFT), introduced a spatially-weighted RSLD approach to minimize tissue interface artifacts, but still faces challenges in accurately representing media geometry. Here, we introduce a deep learning (DL)-aided SWIFT approach that leverages spectral log ratio information to compute spatially varying weights, aiming to reduce estimation bias and refine ACS delineation. A U-Net-based model was trained with k-Wave simulations to segment ellipsoidal inclusions against a homogeneous background. Weights were computed from the model's output following edge detection and dilation operations. In physical phantom targets, the proposed method reduced root-mean-square error by 72% and 31%, improved contrast-to-noise ratio by 240% and 37%, and increased intersection over union by 0.41 and 0.08, compared to RSLD and SWIFT methods, respectively. In vivo analysis of thyroid nodule revealed enhanced border delineation. These results illustrate the promise of DL-assisted techniques to enhance the accuracy of attenuation coefficient estimation.

Idioma originalInglés
Título de la publicación alojadaIEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint Symposium, UFFC-JS 2024 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350371901
DOI
EstadoPublicada - 2024
Evento2024 IEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint Symposium, UFFC-JS 2024 - Taipei, Taiwán
Duración: 22 set. 202426 set. 2024

Serie de la publicación

NombreIEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint Symposium, UFFC-JS 2024 - Proceedings

Conferencia

Conferencia2024 IEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint Symposium, UFFC-JS 2024
País/TerritorioTaiwán
CiudadTaipei
Período22/09/2426/09/24

Huella

Profundice en los temas de investigación de 'Deep Learning-aided Spatially-Weighted Ultrasound Attenuation Estimation'. En conjunto forman una huella única.

Citar esto