Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products

Graciela Carboni, Jorge A. Guccione, Juan J. Guccione, Christian Valqui

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

3 Citas (Scopus)

Resumen

Let k be a field, A a unitary associative k-algebra and V a k-vector space endowed with a distinguished element 1V. We obtain a mixed complex, simpler than the canonical one, that gives the Hochschild, cyclic, negative and periodic homologies of a crossed product E := A #fV, in the sense of Brzeziński. We actually work in the more general context of relative cyclic homology. Specifically, we consider a subalgebra K of A that satisfies suitable hypothesis and we find a mixed complex computing the Hochschild, cyclic, negative and periodic homologies of E relative to K. Then, when E is a cleft braided Hopf crossed product, we obtain a simpler mixed complex, that also gives the Hochschild, cyclic, negative and periodic homologies of E.

Idioma originalInglés
Páginas (desde-hasta)3502-3568
Número de páginas67
PublicaciónAdvances in Mathematics
Volumen231
N.º6
DOI
EstadoPublicada - 20 dic. 2012

Huella

Profundice en los temas de investigación de 'Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products'. En conjunto forman una huella única.

Citar esto