Cubic Law and MAP Compensation Techniques for Robust Text-Independent Speaker Identification

Harry Anacleto, David Chavez

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

Automatic speaker recognition is drastically degraded in presence of noise. This paper focuses on the application of the cubic law and histogram mapping for the text-independent speaker recognition task. Our aim of this study is the application of these two methods in the feature extraction stage of the Power-Normalized Cepstral Coefficients (PNCC) and the conventional Mel Frequency Cepstral Coefficients (MFCC) techniques. Recognition results show that the cubic law combined with the histogram mapping improve the recognition rates.
Idioma originalEspañol
Título de la publicación alojadaInternational Conference on Systems, Signals, and Image Processing
Páginas387-392
Número de páginas6
Volumen2020-July
EstadoPublicada - 1 jul. 2020
Publicado de forma externa

Citar esto