CORN CROPS IDENTIFICATION USING MULTISPECTRAL IMAGES FROM UNMANNED AIRCRAFT SYSTEMS

Fedra Trujillano, Jessenia Gonzalez, Carlos Saito, Andres Flores, Daniel Racoceanu

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Corn is cultivated by smallholder farmers in Ancash - Peru and it is one of the most important crops of the region. Climate change and migration from rural to urban areas are affecting agricultural production and therefore, food security. Information about the cultivated extension is needed for the authorities in order to evaluate the impact in the region. The present study proposes corn areas segmentation in multi-spectral images acquired from Unmanned Aerial Vehicles (UAV), using convolutional neural networks. U-net and U-net using VGG11 encoder were compared using dice and IoU coefficient as metrics. Results show that with the second model, 81.5% dice coefficient can be obtained in this challenging task, allowing envisaging an effective and efficient use of this technology, in this hard context.

Idioma originalInglés
Título de la publicación alojadaIGARSS 2021 - 2021 IEEE International Geoscience and Remote Sensing Symposium, Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas4712-4715
Número de páginas4
ISBN (versión digital)9781665403696
DOI
EstadoPublicada - 2021
Evento2021 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2021 - Brussels, Bélgica
Duración: 12 jul. 202116 jul. 2021

Serie de la publicación

NombreInternational Geoscience and Remote Sensing Symposium (IGARSS)
Volumen2021-July

Conferencia

Conferencia2021 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2021
País/TerritorioBélgica
CiudadBrussels
Período12/07/2116/07/21

Huella

Profundice en los temas de investigación de 'CORN CROPS IDENTIFICATION USING MULTISPECTRAL IMAGES FROM UNMANNED AIRCRAFT SYSTEMS'. En conjunto forman una huella única.

Citar esto