Control of nonlinear dynamic systems using neural networks with incremental learning

Antonio Moran

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

Nonlinear dynamic systems present complex behavior that is not easy to control using conventional techniques. Even more, neural networks cannot always be trained in a straightforward learning scheme for solving dynamic control problems. This paper proposes incremental learning methods for training neural networks for the control of nonlinear dynamic systems using the Dynamic Back Propagation algorithm. By analyzing the complexity of the control problem, learning strategies are formulated in an incremental scheme similar to human learning: starting from easy and simple tasks and continuing with increasingly complex and difficult tasks. The results obtained in the control of highly unstable nonlinear systems, and the positioning control of mobile robots verify the effectiveness of the proposed incremental learning strategies.

Idioma originalInglés
Título de la publicación alojadaProceedings - 2018 4th International Conference on Control, Automation and Robotics, ICCAR 2018
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas182-189
Número de páginas8
ISBN (versión digital)9781538663387
DOI
EstadoPublicada - 13 jun. 2018
Evento4th International Conference on Control, Automation and Robotics, ICCAR 2018 - Auckland, Nueva Zelanda
Duración: 20 abr. 201823 abr. 2018

Serie de la publicación

NombreProceedings - 2018 4th International Conference on Control, Automation and Robotics, ICCAR 2018

Conferencia

Conferencia4th International Conference on Control, Automation and Robotics, ICCAR 2018
País/TerritorioNueva Zelanda
CiudadAuckland
Período20/04/1823/04/18

Huella

Profundice en los temas de investigación de 'Control of nonlinear dynamic systems using neural networks with incremental learning'. En conjunto forman una huella única.

Citar esto