Control of Complex Nonlinear Dynamic Systems with Incremental Deep Learning Neural Networks

Antonio Moran, Masao Nagai

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

This paper proposes incremental deep learning methods for training neural networks to control the response of complex nonlinear dynamic systems. By analyzing the complexity of the task to be fulfilled by the neural network, learning strategies are formulated and implemented in an incremental scheme starting from simple tasks and continuing with increasingly complex tasks. The Dynamic Back Propagation algorithm is used for training the neuro-controller in each step of the incremental learning process, considering the system nonlinear dynamics. The results obtained in the control of highly unstable nonlinear systems, and the positioning control of mobile robots verify the effectiveness of the proposed incremental deep learning strategies.

Idioma originalInglés
Título de la publicación alojada2020 International Joint Conference on Neural Networks, IJCNN 2020 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781728169262
DOI
EstadoPublicada - jul. 2020
Evento2020 International Joint Conference on Neural Networks, IJCNN 2020 - Virtual, Glasgow, Reino Unido
Duración: 19 jul. 202024 jul. 2020

Serie de la publicación

NombreProceedings of the International Joint Conference on Neural Networks

Conferencia

Conferencia2020 International Joint Conference on Neural Networks, IJCNN 2020
País/TerritorioReino Unido
CiudadVirtual, Glasgow
Período19/07/2024/07/20

Huella

Profundice en los temas de investigación de 'Control of Complex Nonlinear Dynamic Systems with Incremental Deep Learning Neural Networks'. En conjunto forman una huella única.

Citar esto