Control of a two-dimensional magnetic positioning system with deep reinforcement learning and feedback linearization

Eduardo Bejar, Antonio Moran

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

This paper presents a neuro-controller based on deep reinforcement learning to control the nonlinear dynamics of a two-dimensional magnetic positioning system. The feedback-linearized model of the magnetic positioning system is used to generate training data for the neuro-controller. The neuro-controller is trained using the Deep Deterministic Policy Gradient (DDPG) algorithm. The effectiveness of the proposed control strategy is verified with different desired setpoints and trajectories, and diverse working conditions.

Idioma originalInglés
Título de la publicación alojada2018 IEEE 61st International Midwest Symposium on Circuits and Systems, MWSCAS 2018
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas909-912
Número de páginas4
ISBN (versión digital)9781538673928
DOI
EstadoPublicada - 2 jul. 2018
Evento61st IEEE International Midwest Symposium on Circuits and Systems, MWSCAS 2018 - Windsor, Canadá
Duración: 5 ago. 20188 ago. 2018

Serie de la publicación

NombreMidwest Symposium on Circuits and Systems
Volumen2018-August
ISSN (versión impresa)1548-3746

Conferencia

Conferencia61st IEEE International Midwest Symposium on Circuits and Systems, MWSCAS 2018
País/TerritorioCanadá
CiudadWindsor
Período5/08/188/08/18

Huella

Profundice en los temas de investigación de 'Control of a two-dimensional magnetic positioning system with deep reinforcement learning and feedback linearization'. En conjunto forman una huella única.

Citar esto