Control of a two-dimensional magnetic positioning system with deep reinforcement learning and feedback linearization

Eduardo Bejar, Antonio Moran Cardenas

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

This paper presents a neuro-controller based on deep reinforcement learning to control the nonlinear dynamics of a two-dimensional magnetic positioning system. The feedback-linearized model of the magnetic positioning system is used to generate training data for the neuro-controller. The neuro-controller is trained using the Deep Deterministic Policy Gradient (DDPG) algorithm. The effectiveness of the proposed control strategy is verified with different desired setpoints and trajectories, and diverse working conditions.
Idioma originalEspañol
Título de la publicación alojadaMidwest Symposium on Circuits and Systems
Páginas909-912
Número de páginas4
Volumen2018-August
EstadoPublicada - 22 ene. 2019
Publicado de forma externa

Citar esto