Computing Invariant Zeros of a Linear System Using State-Space Realization

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

It is well known that zeros and poles of a single-input, single-output system in the transfer function form are the roots of the transfer function's numerator and the denominator polynomial, respectively. However, in the state-space form, where the poles are a subset of the eigenvalue of the dynamics matrix and thus can be computed by solving an eigenvalue problem, the computation of zeros is a non-trivial problem. This paper presents a realization of a linear system that allows the computation of invariant zeros by solving a simple eigenvalue problem. The result is valid for square multi-input, multi-output (MIMO) systems, is unaffected by lack of observability or controllability, and is easily extended to wide MIMO systems. Finally, the paper illuminates the connection between the zero-subspace form and the normal form to conclude that zeros are the poles of the system's zero dynamics.

Idioma originalInglés
Título de la publicación alojada2024 American Control Conference, ACC 2024
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas2746-2751
Número de páginas6
ISBN (versión digital)9798350382655
DOI
EstadoPublicada - 2024
Publicado de forma externa
Evento2024 American Control Conference, ACC 2024 - Toronto, Canadá
Duración: 10 jul. 202412 jul. 2024

Serie de la publicación

NombreProceedings of the American Control Conference
ISSN (versión impresa)0743-1619

Conferencia

Conferencia2024 American Control Conference, ACC 2024
País/TerritorioCanadá
CiudadToronto
Período10/07/2412/07/24

Huella

Profundice en los temas de investigación de 'Computing Invariant Zeros of a Linear System Using State-Space Realization'. En conjunto forman una huella única.

Citar esto