Comparison of deep learning architectures for COVID-19 diagnosis using chest X-ray images

Denilson Sampén, Roberto Lavarello

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

The implementation of architectures based on artificial intelligence and deep learning to support COVID-19 diagnosis has great potential. However, especially in architectures designed at the beginning of the pandemic, they use different databases that do not contain a good amount of chest X-ray images of COVID-19 patients. The present work presents a comparison of three deep learning architectures (COVID-Net, CovXNet and DarkCovidNet) for COVID-19 diagnosis using chest Xray images. First, the architectures were implemented with the databases provided by the authors, to compare the results with those presented in the state of the art. Then, a new database with more than 9000 chest X-ray images of patients with COVID-19, pneumonia and healthy (3305 images for each class), was elaborated using databases from four different institutions around the world. Finally, the database was used to evaluate the original architectures, retrain them and, finally, evaluate the performance of the retrained architectures and compare results. It was identified that the architectures with the best performance and generalizability are DarkCovidNet and CovXNet with a support vector machine stacking algorithm, with an accuracy of 94.04% and 92.02% respectively, for the test data of the new database. 2022 SPIE.

Idioma originalInglés
Título de la publicación alojadaMedical Imaging 2022
Subtítulo de la publicación alojadaImage Perception, Observer Performance, and Technology Assessment
EditoresClaudia R. Mello-Thoms, Claudia R. Mello-Thoms, Sian Taylor-Phillips
EditorialSPIE
ISBN (versión digital)9781510649453
DOI
EstadoPublicada - 2022
EventoMedical Imaging 2022: Image Perception, Observer Performance, and Technology Assessment - Virtual, Online
Duración: 21 mar. 202227 mar. 2022

Serie de la publicación

NombreProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volumen12035
ISSN (versión impresa)1605-7422

Conferencia

ConferenciaMedical Imaging 2022: Image Perception, Observer Performance, and Technology Assessment
CiudadVirtual, Online
Período21/03/2227/03/22

Huella

Profundice en los temas de investigación de 'Comparison of deep learning architectures for COVID-19 diagnosis using chest X-ray images'. En conjunto forman una huella única.

Citar esto