Comparison of Conventional Techniques for House Electricity Consumption Forecasting

Sandra Pajares Centeno, Hugo Alatrista-Salas

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

Electricity consumption monitoring is the automated process of recording, processing, and analyzing electricity usage in real time to make informed decisions. This research aims to implement an artificial intelligence- and deep learningbased methodology to forecast monthly electricity consumption in Tacna, Peru, and generate decision-making indicators. To this end, we used electricity consumption records from Electrosur S.A., the company responsible for electricity distribution and marketing in the departments of Tacna and Moquegua, from February 2015 to December 2022 (a total of 95 months). We compared three artificial intelligence models in this context: (i) eXtreme Gradient Boosting (XGBoost), (ii) Light Gradient Boosting (LGBM), and (iii) Prophet. While all models effectively forecasted electricity consumption, the Prophet model demonstrated superior performance, achieving a mean absolute percentage error (MAPE) of 0.7% compared to actual consumption values. Additionally, the study discusses the potential of recurrent neural networks to further enhance predictive accuracy.

Idioma originalInglés
Páginas (desde-hasta)1116-1122
Número de páginas7
PublicaciónInternational Journal of Advanced Computer Science and Applications
Volumen16
N.º6
DOI
EstadoPublicada - 2025
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Comparison of Conventional Techniques for House Electricity Consumption Forecasting'. En conjunto forman una huella única.

Citar esto