Comparative Study of Spatial Prediction Models for Estimating PM2.5 Concentration Level in Urban Areas

Irvin Rosendo Vargas-Campos, Edwin Villanueva

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

Having accurate spatial prediction models of air pollutant concentrations can be very helpful to alleviate the shortage of monitoring stations, specially in low-to-middle income countries. However, given the large diversity of model types, both statistical, numerical and machine learning (ML) based, it is not clear which of them are most suitable for this task. In this paper we study the predictive capabilities of common machine learning methods for the spatial prediction of PM2.5 concentration level. Three relevant factors were scrutinized: the extent to which meteorological variables impact the prediction performance; the effect of variable normalization by inverse distance weighting (IDW); and the number of neighborhood stations needed to maximize predictive performance. Results in a dataset from Beijing monitoring network show that simple models like Linear Regresors trained on IDW normalized variables can cope with this task. Some knowledge have been derived to guide the construction of competent models for spatial prediction of PM2.5 concentrations with ML-based methods.

Idioma originalInglés
Título de la publicación alojadaInformation Management and Big Data - 7th Annual International Conference, SIMBig 2020, Proceedings
EditoresJuan Antonio Lossio-Ventura, Jorge Carlos Valverde-Rebaza, Eduardo Díaz, Hugo Alatrista-Salas
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas169-180
Número de páginas12
ISBN (versión impresa)9783030762278
DOI
EstadoPublicada - 2021
Evento7th Annual International Conference on Information Management and Big Data, SIMBig 2020 - Virtual, Online
Duración: 1 oct. 20203 oct. 2020

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen1410 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia7th Annual International Conference on Information Management and Big Data, SIMBig 2020
CiudadVirtual, Online
Período1/10/203/10/20

Huella

Profundice en los temas de investigación de 'Comparative Study of Spatial Prediction Models for Estimating PM2.5 Concentration Level in Urban Areas'. En conjunto forman una huella única.

Citar esto