Comparative Evaluation of YOLO Models for Gauge Detection

Franco Rivadeneira, Eduardo Cabrera Yi, Alessandro Miyahira, Miguel Zinanyuca, Francisco Cuellar

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

In various industries, accurate gauge measurement is crucial for maintaining safety and equipment integrity, particularly in hazardous environments with flammable, corrosive, or toxic substances. Ensuring precise detection is essential to avoid accidents and enhance operational efficiency. Traditional methods often struggle with technical and safety limitations in such conditions. Consequently, creating reliable gauge detection systems for hazardous environments has become a key area of innovation, demanding robust performance and compliance with strict safety standards. In this paper, we aim to train an optimal model with the best performance for detecting gauges in hazardous environments. This is achieved by comparing the latest versions of the most frequently used detection architecture, YOLO by Ultralytics. As a result, six models with different optimizers were trained per version, with the YOLOv10 model using the NAdam optimizer emerging as the best. It achieved an F1-Score of 98.2% and a latency of 4.22 ms.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 2024 Latin American Robotics Symposium, LARS 2024
EditoresLuiz Chaimowicz, Raquel Esperanza Patino-Escarcina, Dennis Barrios-Aranibar
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798331508807
DOI
EstadoPublicada - 2024
Evento2024 Latin American Robotics Symposium, LARS 2024 - Arequipa, Perú
Duración: 11 nov. 202414 nov. 2024

Serie de la publicación

NombreProceedings of the 2024 Latin American Robotics Symposium, LARS 2024

Conferencia

Conferencia2024 Latin American Robotics Symposium, LARS 2024
País/TerritorioPerú
CiudadArequipa
Período11/11/2414/11/24

Huella

Profundice en los temas de investigación de 'Comparative Evaluation of YOLO Models for Gauge Detection'. En conjunto forman una huella única.

Citar esto