Classification of surface electromyographic signals using AM-FM features

Christodoulos I. Christodoulou, Prodromos A. Kaplanis, Victor Murray, Marios S. Pattichis, Constantinos S. Pattichis

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

4 Citas (Scopus)

Resumen

The objective of this study was to evaluate the usefulness of AM-FM features extracted from surface electro myographic (SEMG) signals for the assessment of neuromuscular disorders at different force levels. SEMG signals were recorded from a total of 40 subjects, 20 normal and 20 patients, at 10%, 30%, 50%, 70% and 100% of maximum voluntary contraction (MVC), from the biceps brachii muscle. From the SEMG signals, we extracted the instantaneous amplitude, the instantaneous frequency and the instantaneous phase. For each AM-FM feature their histograms were computed for 32 bins. For the classification, three classifiers were used: (i) the statistical K-nearest neighbour (KNN), (ii) the neural self-organizing map (SOM) and (iii) the neural support vector machine (SVM). For all classifiers the leave-one-out methodology was implemented for the classification of the SEMG signals into normal or pathogenic. The test results reached a classification success rate of 80% when a combination of the three AM-FM features was used.

Idioma originalInglés
Título de la publicación alojadaFinal Program and Abstract Book - 9th International Conference on Information Technology and Applications in Biomedicine, ITAB 2009
DOI
EstadoPublicada - 2009
Publicado de forma externa
Evento9th International Conference on Information Technology and Applications in Biomedicine, ITAB 2009 - Larnaca, Chipre
Duración: 4 nov. 20097 nov. 2009

Serie de la publicación

NombreFinal Program and Abstract Book - 9th International Conference on Information Technology and Applications in Biomedicine, ITAB 2009

Conferencia

Conferencia9th International Conference on Information Technology and Applications in Biomedicine, ITAB 2009
País/TerritorioChipre
CiudadLarnaca
Período4/11/097/11/09

Huella

Profundice en los temas de investigación de 'Classification of surface electromyographic signals using AM-FM features'. En conjunto forman una huella única.

Citar esto