Classification of solar panel technology and photovoltaic cell status applying machine learning to electroluminescence images

Joseph Aldair Prado López, Carlos Alberto Paragua-Macuri, Dante A.Mendoza Aucaruri, Jośe R.Angulo Abanto, Jan A. Töfflinger

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Photovoltaic energy, being renewable and environmentally friendly, significantly contributes to reducing greenhouse gas emissions. Its popularity and swift technological advances have facilitated the widespread commercialization of solar panels across various sectors. Nonetheless, these panels may harbor cell defects that adversely affect their performance and longevity. Consequently, certain techniques are employed to assess the condition of photovoltaic panels. This study explored the electroluminescence technique, which enabled us to capture high-resolution images for defect analysis within a panel. Utilizing the "LumiSolarOutdoor"electroluminescence system, we applied this method to operational photovoltaic panels in grid-connected systems in Lima, Peru. This effort generated a comprehensive database instrumental in training the "ResNet-50"pre-trained neural network. This network efficiently classified each cell's technology and degradation status within the panels. For detailed analysis, the proposed algorithm undertook pre-processing, filtering, segmentation, feature extraction, and classification of the electroluminescence images.

Idioma originalInglés
Título de la publicación alojada2024 IEEE 22nd Mediterranean Electrotechnical Conference, MELECON 2024
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas121-126
Número de páginas6
ISBN (versión digital)9798350387025
DOI
EstadoPublicada - 2024
Evento22nd IEEE Mediterranean Electrotechnical Conference, MELECON 2024 - Porto, Portugal
Duración: 25 jun. 202427 jun. 2024

Serie de la publicación

Nombre2024 IEEE 22nd Mediterranean Electrotechnical Conference, MELECON 2024

Conferencia

Conferencia22nd IEEE Mediterranean Electrotechnical Conference, MELECON 2024
País/TerritorioPortugal
CiudadPorto
Período25/06/2427/06/24

Huella

Profundice en los temas de investigación de 'Classification of solar panel technology and photovoltaic cell status applying machine learning to electroluminescence images'. En conjunto forman una huella única.

Citar esto